Posts Tagged ‘AS1851’


Every fire resistant doorset installed in Australia must be installed in accordance with the requirements of the Building Code of Australia (BCA). The current Australian Standard referred to in the BCA for Fire Resistant Doors is AS1905.1-2005 “Components for the protection of openings in fire resistant walls.

 While this article concentrates on the requirements of the fire door compliance tag, a fire door is a component of a complete doorset which includes the door leaf, or leaves, the frame (inclusive of the required frame compliance tag), hardware, seals, other attachments to the doorset (e.g. vision panels and air grilles) and the wall in which the doorset is installed including the fixing of the attachments to the door/s, the door/s to the frame and the frame to the wall.


This Blog Post is accompanied by a summary table of fire door compliance tag requirements in Australia. The table details all the relevant Australian Standards and the relevant clauses relating to fire door compliance tags. To view the table click here (sorry could not format it to fit on this Blog Post).


The fixing of a compliance tag to a fire resistant doorset has been a requirement from the initial fire door code (AS CA57, Part 1-1972) to the current time.

The door tag is an integral component of a fire-resistant doorset identifying the door and setting it apart from other doors such as solid core doors, hollow core doors and the like.

Considering this, it is clear why the compliance tag is so critical; it identifies the door as a fire-resistant door (being a component of a complete fire resistant doorset), and further gives a reference to the performance (i.e. the fire –resistant level) of the specific door.

The physical tag requirements have remained unchanged over the revisions of the relevant standards (aside from the imperial to metric changes which first appeared in the 1976 revision) but more often we are seeing tags provided by suppliers which are printed, not etched, embossed or stamped which can lead to issues in identification when tags are painted over.

Recessed or projected numbers and letters can be painted over and still be identifiable even if a solvent is used to clean the tag. This tiny little point is often missed by tag providers and this should be addressed by all who have the responsibility of manufacturing, supplying or installing compliance tags and is a clear requirement of the Standard and for good reason.

Building owners and managers should be aware of the importance of compliance tags to ensure trades such as painters are directed to treat compliance tags as they would locks and closers  and protect them prior to painting.

The fixing of the compliance tag to the door leaf is another issue. Adhesives while appropriate short term can degrade over time. This can lead to compliance tags becoming detached from the door.

Sticking a tag to a door leaf is a major contributing factor in compliance tags falling off doors and aside from the 1984 revision tags have had to be either mechanically or firmly affixed.

This small point is the bane of contention of building owners and managers who consistently see the wording “missing compliance tag, recommend new door”.

Industry providers are doing themselves an injustice in not doing these simple things to protect the end user from the premature replacement of their fire resistant doors.

The details on a compliance tag provide critical information which is used by inspectors (or should be used) to assess the fire resistant doorset during its serviceable life as it identifies the conditions by which the fire resistant doorset  was designed and should be assessed against.

These details have changed over the years so inspectors should be aware of the marking requirements for the relevant performance standard applicable to the doorset being inspected (see table above “Required Tag Details”).

If you have seen a tag in the field with the standard “AS1851” prominently displayed, this is not a compliance tag. This detail provides no assistance to the inspector of the fire-resistant doorset as it fails to provide any of the details required by AS1905.1.

Tag location is stated in general as approximate and where the placement of the tag on the hinge side of the door leaf could impact the performance of the doorset (i.e. perimeter door seals for example) there is comment to recommend the relocation of the tag to the face of the door on the top hinge side.

Who can tag a fire-resistant door has been defined since the Standard revision in 1990. In looking at the possibility of retagging a fire-resistant door which has lost its compliance tag, we must firstly satisfy ourselves that we are able to.

For doorsets manufactured and installed prior to 1990, the Standard provided no definition as to who could tag a fire-resistant doorsets and as such it would be reasonable to assume that doorsets of this era are able to be tagged by anyone who could satisfy the requirements of assessing the installation and making the determinations required by the relevant code at the time the doorset was manufactured and installed.

For doorsets installed between 1990 and 1997, the definition provided for who can tag a fire-resistant doorset was defined as “The Supplier”, defining the supplier as the sponsor of the test on the prototype fire-resistant doorset who certifies that the doorset, when installed, complies with the Standard. Considering this definition, to retag a doorset manufactured and installed during this time you would have to identify the core of the door to then identify the “Sponsor”. Additional to this would be your ability to identify the year of manufacture and installation.

For doorsets installed since 1997 the manufacturer or certifier has been defined as the allowing tagging entity. To tag a doorset manufactured and installed in this period you would have to be able to identify who the original manufacturer of the door was in order to seek their authorization to retag a fire-resistant doorset.

The issue of being able to retag a fire-resistant doorset is a hot topic with companies on both sides of the fence. The issue of “should you retag a fire door” is not discussed in this article and it is incumbent on individuals making claims of being able to retag fire-resistant doorsets that they can do so in accordance with the requirements of the Standards.

As with the physical requirements of a tag, documentation has been a requirement since 1972. The details of documents and the form in which they are provided has changed over revisions but in general, a “schedule of evidence” or “evidence of compliance with the code” has been required. An example of the documentation to be provided is given at the back of most Standard revisions.

A NOTE ON ASBESTOS

A common practice for identifying a fire-resistant doorset is to remove the lockset to expose the inner core of the door. By exposing the core an experienced individual may be able to identify the type of core and the potential manufacturer or sponsor/applicant.

If you do undertake this practice please be mindful that fire doors manufactured up until the early 1980’s were predominantly manufactured using asbestos as the core material. Removing the lockset can lead to exposure to asbestos fibres and should be avoided at all costs. If you suspect that a door may contain asbestos then it would be advised that the appropriate controls are put in place prior to removing the lockset to ensure exposed asbestos is contained.

Table below summarises State and Territory Acts and Regulations with respect to working with Asbestos.

State / Territory Act Regulations
QLD Workplace Health and Safety Act 1995 Workplace Health and Safety Regulations 2008
NSW Occupational Health and Safety Act 2000 Occupational Health and Safety Regulations 2001
ACT Work Safety Act 2008 Work Safety Legislation Amendment Act 2009 Dangerous Substances (General) Regulations 2004
VIC Occupational Health and Safety Act 2004 Occupational Health and Safety Regulations 2007
TAS Workplace Health and Safety Act 1995 Workplace Health and Safety Regulations 1998
SA Occupational Health, Safety and Welfare Act 1986 Occupational Health, Safety and Welfare (SafeWork SA) Amendment Act 2005 Occupational Health, Safety and Welfare Regulations 1995
WA Occupational Safety and Health Act 1984 Occupational Safety and Health Regulations 1996
NT Workplace Health and Safety Act 2007 Workplace Health and Safety Regulations 2008

(Source http://www.asbestosaustralia.com.au/ )

Advertisements

Passive Fire Protection

To better understand passive fire protection we need to firstly understand the concepts of “Compartmentalization” and “Flashover”.

Compartmentalization is the process of dividing large areas into smaller areas such as rooms within a level of a building. Each room may have a different function. You may have a plant room, an office space, a toilet area, and amenities area etc. In dividing large spaces into smaller areas we can then minimize the effects of one area on another area within the same space (e.g. two rooms on the one level of a building).

Flashover is the point at which there is the near simultaneous ignition of all combustible material in an enclosed area such as a room or the floor of a building (see the link at the end “Living Room Flashover). When certain materials are heated they release flammable gases. Flashover occurs when the majority of surfaces in a space are heated to the ignition temperature of the flammable gases. Flashover normally occurs at 500 °C (930 °F) for ordinary combustibles.[i]

If we look at a Time/Temperature curve[ii], you can see that for a fire to reach a temperature of 500 °C can take less than 10 minutes. From the “Living Room Flashover” video you can see that this occurs in the simulation in less than two minutes.

Passive fire protection measures ensure a building’s structure remains stable during fire, keep escape routes safe, limit the spread of fire, heat, and smoke from one compartment to another, so people have time to get out and fire officers have time to get in.[iii]

If we look at a room like a balloon, the objective of passive fire protection is to keep the air in the balloon for as long as possible. If we have a hole in the balloon the air escapes. If we have a hole in a compartment and there is a fire within the compartment, the fire can move from the compartment through the hole to an adjoining compartment and spread or alternatively the hole can provide additional oxygen to fuel the fire and accelerate the progression of the fire.

Plug up the holes, the obvious and the not so obvious

Passive fire protection is the process of “plugging up the holes”. For a room to be useful you have to be able to get in and out of it. For this to occur you have to create a hole in the wall into which you put a door so you can get into and out of the room.

Now we are in the room we need air so we run an air conditioning duct through the ceiling to the room. If we pump air into the room we have to allow air to leave the room so we leave a hole in the wall above the ceiling to allow the air to circulate through the room.

We want a drink so we go to the sink in the room and pour a glass of water. The pipes carrying the water and the waste from the sink go through the floor to the underside of the roof of the room below.

We plug our laptop into a power point. The cable for the power point runs through the wall and across the ceiling of a number of other rooms to the electrical distribution board.

So for our simple room we have a few holes which during normal activities are required to be there but in a fire can allow fire to spread quickly from one room to another if they are not adequately addressed;

  1. Doorway (Access and Egress Provisions)
  2. Air Conditioning Duct Work and Openings (Mechanical Services)
  3. Electrical Cabling through Walls and Ceilings (Electrical Services)
  4. Pipe Work through Floor Slabs (Hydraulic Services)

Passive fire protection is used to address these issues. The most obvious hole, the doorway, can be protected by the installation of a fire door with an automatic door closer so the door remains closed at all times and does not rely on people to close it.

The air condition supply ducts and return air ducts’/openings can be fitted with fire dampers which activate in a fire to close off the duct or opening and minimise the spread of fire and smoke. Fire dampers are not so obvious and are often installed incorrectly or not installed at all.

The walls can be fitted with fire resistant lining materials (such as fire rated wall sheeting) so a fire in the wall (possibly from electrical cabling) can be contained within the wall and not spread into the room. Fire rated pillows can also be installed in opening made through walls above the ceiling level to run cabling from one room to another.

Pipe work penetrating through the floor can be fitted with fire collars which act as a barrier around the pipe work to minimise the spread of fire through the floor into the ceiling of the room below.

The illustration below gives an idea about the various passive fire protection systems you may find in your facility.

Example of a fire and smoke compartment showing passive fire and smoke protection systems[iv]

 

 

Legend

  1. Fire and smoke barriers
  2. Structural fire-resistant elements–Beams, columns, trusses
  3. Fire-resistant doorsets
  4. Smoke doors
  5. Fire-resistant shutters
  6. Fire-resistant glazing
  7. Access panels and hatches
  8. Ducts and dampers
  9. Fire stopping of service penetration and control joints

Passive Fire Protection measures are intended to contain a fire in the fire compartment of origin, thus limiting the spread of fire and smoke for a limited period of time. This limited period of time is the time needed for people to safely evacuate the building. Fire protection is provided for life safety. Property and financial loss prevention is a by product of keeping people safe and having effective fire systems protecting our buildings.

Passive fire protection as with all fire protection systems and equipment should be installed, serviced and maintained regularly by trained, and where required, certified personnel.

To visualise the importance of passive fire protection the following photo[v] shows passive fire protection in action. The photo is an aerial photo of a brewery fire. You can clearly see how effective passive fire separation can be in protecting the lives of the people in the adjoining space and also the additional benefit of the protection of the structure of the adjoining space.

Looking for further information

The links below are provided purely for your convenience. They do not imply endorsement of or, association with any products, services, content, information or materials offered by or accessible to you at the target site.

http://www.pfpa.com.auPassive Fire Protection Alliance
http://www.nfpa.orgNational Fire Protection Association
http://irc.nrc-cnrc.gc.ca/Institute for Research in Construction/NRC
http://www.metacafe.com/watch/682670/from_living_room_to_inferno_in_under_2_minutes/-Living Room Flashover Video
http://www.firetactics.com/FLASHOVER.htmRapid Fire Progress & Flashover related fire development
http://afscc.org/Alliance for Fire & Smoke Containment & Control
http://www.eapfp.com/European Association for Passive Fire Protection
http://pfpf.org/Passive Fire Protection Federation (PFPF)
http://www.l-com.com/multimedia/video_clips/video.aspx?ID=13100Videos showing flammability of cables based on jacket rating
http://www.fpaa.com.auFire Protection Association of Australia
https://rfidams.wordpress.comPeter Mole’s Blog Page

References
[i] NFPA Fire Protection Handbook, 2-106
[iv] Australian Standard 1851-2005 Maintenance of Fire Protection Systems and Equipment (Page 163, Figure 17.1)
[v] Technical Guide TG-005 (Page 15), John Rakic
Disclaimer This article was written by Peter Mole General Manager at Taylors Doors and Frames and while every care has been taken in the compilation of this information and every attempt made to present up-to-date and accurate information, we cannot guarantee that inaccuracies will not occur. All copyright and trade marks accessible via the links in this article are owned by the respective website owners, or their licensors.

 

 

1. What are edge strips?

Edge strips are basically strips of timber which frame the outside of the fire door.

Edge strips are predominantly pine or finger jointed timber and should be free of bowing, twists, knot holes and other irregularities all of which should be checked prior to assembly of the fire door, or prior to installation of the fire door.

2. Why are they used?

Edge strips are used predominantly for the following reasons;

  • For the prevention of moisture entering the core of the door and
  • To allow for site trimming to achieve the stipulated clearances between the door and the frame.

3. What happens to an edge strip if the door is subjected to fire conditions?

As the edge strip is timber, under fire conditions the edge strip will burn.

Although this seems drastic don’t worry. The door will not fall out of the frame as the hinges are fixed into perforated steel plates within the fire door.

You will note that the stop section of a fire rated frame (i.e. the section of frame the door closes on and prevents the door from being swung right through the opening) is bigger than a standard stop section (i.e. 25mm for fire rated frames and 12mm to 15mm for non rated frames). An edge strip is nominally 10mm thick so if it burns away, the core inside the fire door will still overlap the frame and provide a barrier to the spread of a fire for a certain amount of time.

4. Where do edge strips commonly split?

From inspecting thousands of doors over the years, the most predominant area where I have found splitting of the edge strip is above and below the lockset latch (both mortice and cylindrical) and to a lesser extent above and below the hinges.

If you are cutting timber for a fire using an axe, you often find that you start with a little crack in the piece of timber and then with continual force, the crack grows bigger and then follows further along the grain of the timber.

This is true also for timber edge strips. When the lock and hinges are installed, they are usually rebated (referred to as “checking in”) the timber edge strip so that once installed they finish flush in line with the edge strip giving a neat aesthetically pleasing finish.

In doing this, often very small cracks can begin on the corners of the rebated section and over time with the door opening and closing the cracks gradually grow bigger and bigger until a split in the edge strip becomes visible.

Regular maintenance of fire doors can go along way to maximise the life of the fire door by ensuring the door does not slam into the frame.

Like hitting a piece of timber with an axe, slamming of a door can cause the same effect. Even though there is no axe (unless of corse the fire brigade come to visit and you forget to give them a key), the door can be subjected to a similar force which over time allows the crack to develop further until it meets the grain of the timber and off it goes.

To minimise the spread of splits in a timber edge strip make sure the adjustment of the closer is correct so that the door does not to slam into its latching position.

5. What effect does a split edge strip have on the ability of a fire door to perform under fire conditions?

As discussed in Point 3, in a fire the edge strip is most likely burnt so in a simple response we can deduce that a split in the edge strip would have little effect on the doors ability to perform under fire conditions because it is one of the first things to be turned into ash.

Having said this however, we need to be mindful of why edge strips are used.

As discussed in Point 2, one of the main reasons for having an edge strip is to prevent moisture from getting into the core of the door.

If a split in the edge strip is large enough to allow moisture into the core of the door, it requires immediate attention.

Please note that any repair to a fire door must be done in accordance with the requirements of the relevant codes and standards and as such it would be highly recommended to speak to your fire door provider prior to undertaking any repairs to your fire doors to ensure that the proposed method of repair will not effect the integrity of the fire door and further that the repair method is approved.

The internal damage to the door core from moisture can affect the doors ability to perform under fire conditions as hollow pockets can form inside the door where the door core deteriorates and/or collapses.

As the outer covering of the door, like the edge strips, is generally timber (ply, MDF, Duracote etc), when it burns, hollow pockets within the door can be exposed allowing a fire to spread through the door. This obviously defeats the purpose of having the fire door there in the first place.

6. Summary

If you do have fire doors showing the early signs of splitting along the edge strips, get onto it early, don’t ignore it.

You will normally find that with preventative maintenance and regular inspection of the doors you can minimise the spread of splitting and maximise the life of your fire doors.

Edge strips are an integral component of a fire door and although they have little function if there is a fire, they are very important in maintaining the integrity of the door by creating the barrier between the internal core of the door and the moisture in the air so that if a fire does occur, the door can perform as it was designed to.

If you are advised by your service provider that your fire door requires replacement due to splits occurring on the edge strips, it may not be as bad as it seems.

We would suggest that prior to replacing any fire doors you speak with the manufacturer (the company or person who constructed the door) or sponsor (the person or company who manufactured the core of the door) of the particular fire door you have installed (the name of the manufacture and sponsor should be found on the compliance tag installed on the hinge side edge strip of the fire door) and check with them to ascertain if a repair method is available.


If you found this article useful or otherwise please provide comments or suggestions so I can improve on future posts.